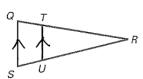

Proportions and Similar Triangles

THEOREM 8.4: TRIANGLE PROPORTIONALITY THEOREM

If a line parallel to one side of a triangle intersects the other two sides, then it divides the two sides proportionally


If
$$\overline{TU} \parallel \overline{QS}$$
, then $\overline{\frac{QT}{TR}} = \frac{SU}{UR}$.

THEOREM 8.5: CONVERSE OF THE TRIANGLE PROPORTIONALITY THEOREM

If a line divides two sides of a triangle proportionally, then it is parallel to the 3rd Side.

If
$$\frac{RT}{TO} = \frac{RU}{US}$$
, then $\boxed{1}$

Example 1 Finding the Length of a Segment

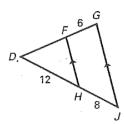
What is the length of \overline{NR} ?

Solution

Theorem

Substitute.

$$\frac{34}{100} = NR$$

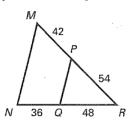

Multiply each side by 9.

$$Q = NR$$

Simplify.

Answer So, the length of \overline{NR} is Q.

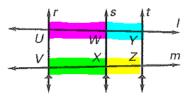
1. Find the length of \overline{DF} .



$$\frac{DF}{FG} = \frac{DH}{HJ}$$

$$\frac{\times}{6} = \frac{12}{8}$$

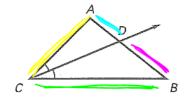
$$72 = 8x$$


2. Given the diagram, determine whether MN is parallel to \overline{PQ} .

no parallel

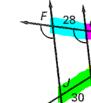
THEOREM 8.6

If three parallel lines intersect two transversals, then they divide the transversals proportionally

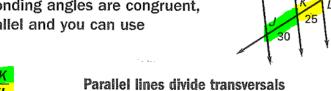

If $r \parallel s$ and $s \parallel t$, and ℓ and m

intersect
$$r$$
, s , and t , then

If a ray bisects an angle of a triangle, then it divides the opposite side into segments whose lengths are proportional to the lengths of the other two sides.


If \overrightarrow{CD} bisects $\angle ACB$, then $\overrightarrow{DB} =$

If
$$\overrightarrow{CD}$$
 bisects $\angle ACB$, then


Using Proportionality Theorems -Example 2

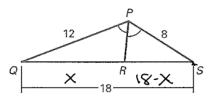
What is the length of \overline{GH} ?

Solution

Because corresponding angles are congruent, the lines are parallel and you can use Theorem 8.6.

$$\frac{28}{GH} = \frac{30}{25}$$
 Substitute.

$$\frac{28 \cdot 25}{\cancel{500}} = \cancel{30} \cdot \cancel{GH}$$
 Cross product property.


$$\frac{\cancel{700}}{\cancel{30}} = \cancel{GH}$$
 Divide each side by $\cancel{30}$ and simplify.

proportionally.

Answer So, the length of \overline{GH} is $\frac{70}{3}$, or 23.3

Example 3 Using Proportionality Theorems

In the diagram, $\angle QPR \cong \angle RPS$. Use the given side lengths to find the length of QR.

Solution

Because \overline{PR} is an angle bisector of \angle QPS, you can apply Theorem 8.7.

Let
$$x = QR$$
. Then, $RS = 18 - x$.

$$\frac{PS}{QP} = \frac{RS}{QR}$$

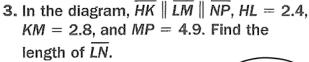
$$\frac{8}{12} = \frac{18-x}{x}$$

$$\frac{8 \cdot x = 12 (18 - X)}{8x = 216 - 12x}$$

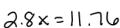
$$\frac{20x = 216}{x = 10.8}$$

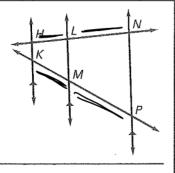
Apply Theorem 8.7.

Substitute.

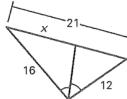

Cross product property

Distributive property


Add |2x| to each side.


Divide each side by 20.

inswer So, the length of \overline{QR} is 10.8 units.


$$\frac{2.4}{x} = \frac{2.8}{4.9}$$

4. Find the value of x.

$$\frac{16}{12} = \frac{x}{21-x}$$
 | $\frac{12x=336-16x}{x=12}$

